MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration
نویسندگان
چکیده
Subsets of rodent neurons are reported to express major histocompatibility complex class I (MHC-I), but such expression has not been reported in normal adult human neurons. Here we provide evidence from immunolabel, RNA expression and mass spectrometry analysis of postmortem samples that human catecholaminergic substantia nigra and locus coeruleus neurons express MHC-I, and that this molecule is inducible in human stem cell-derived dopamine (DA) neurons. Catecholamine murine cultured neurons are more responsive to induction of MHC-I by gamma-interferon than other neuronal populations. Neuronal MHC-I is also induced by factors released from microglia activated by neuromelanin or alpha-synuclein, or high cytosolic DA and/or oxidative stress. DA neurons internalize foreign ovalbumin and display antigen derived from this protein by MHC-I, which triggers DA neuronal death in the presence of appropriate cytotoxic T cells. Thus, neuronal MHC-I can trigger antigenic response, and catecholamine neurons may be particularly susceptible to T-cell-mediated cytotoxic attack.
منابع مشابه
SUSCEPTIBILITY OF HUMAN WM MELANOMA CELL LINES TO NK AND LAK CYTOTOXICITY AND THEIR RELEVANCE TO THE LEVEL OF MHC CLASS I AND ICAM-l ANTIGEN EXPRESSION
The effect of natural killer (NK) cells and lymphokine activated killer ( LAK) cells was studied on a group of human melanoma cell lines. Peripheral blood from healthy volunteers was utilized as a fresh source of natural killer cells and rhI L-2 for producing LAK cells. The cytotoxicity of effector cells was quantified using a 4 hour SI determining the density of antigen expression on tumor...
متن کاملVulnerability of human neurons to T cell-mediated cytotoxicity.
Axonal and neuronal loss occurs in inflammatory diseases of the CNS such as multiple sclerosis. The cause of the loss remains unclear. We report that polyclonally activated T cells align along axons and soma of cultured human neurons leading to substantial neuronal death. This occurs in an allogeneic and syngeneic manner in the absence of added Ag, requires T cells to be activated, and is media...
متن کاملNeurons are MHC Class I-Dependent Targets for CD8 T Cells upon Neurotropic Viral Infection
Following infection of the central nervous system (CNS), the immune system is faced with the challenge of eliminating the pathogen without causing significant damage to neurons, which have limited capacities of renewal. In particular, it was thought that neurons were protected from direct attack by cytotoxic T lymphocytes (CTL) because they do not express major histocompatibility class I (MHC I...
متن کاملHuman Cytomegalovirus UL18 Utilizes US6 for Evading the NK and T-Cell Responses
Human cytomegalovirus (HCMV) US6 glycoprotein inhibits TAP function, resulting in down-regulation of MHC class I molecules at the cell surface. Cells lacking MHC class I molecules are susceptible to NK cell lysis. HCMV expresses UL18, a MHC class I homolog that functions as a surrogate to prevent host cell lysis. Despite a high level of sequence and structural homology between UL18 and MHC clas...
متن کاملDown-regulation of NKG2D and NKp80 ligands by Kaposi's sarcoma-associated herpesvirus K5 protects against NK cell cytotoxicity.
Natural killer (NK) cells are important early mediators of host immunity to viral infections. The NK activatory receptors NKG2D and NKp80, both C-type lectin-like homodimeric receptors, stimulate NK cell cytotoxicity toward target cells. Like other herpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV) down-regulates MHC class I molecules to avoid detection by cytotoxic T lymphocytes but...
متن کامل